The role of perfusion MRi and CT technology in the hemodynamic evaluation of brain tumors
Translational Medicine
View Archive InfoField | Value | |
Title |
The role of perfusion MRi and CT technology in the hemodynamic evaluation of brain tumors
Роль перфузионных технологий в оценке гемодинамики опухолей головного мозга |
|
Creator |
Andrey Stanzhevskiy A.; Almazov Federal North-West Medical Research Centre; Russian Research Centre of Radiology and Surgical Technologies
Leonid Tyutin A.; Russian Research Centre of Radiology and Surgical Technologies Андрей Станжевский Алексеевич; ФГБУ «Северо-западный федеральный медицинский исследовательский центр им. В. А. Алмазова»; ФГБУ «Российский научный центр радиологии и хирургических технологий» Минздрава России Леонид Тютин Аврамович; ФГБУ «Российский научный центр радиологии и хирургических технологий» Минздрава России |
|
Subject |
перфузия; перфузионная МРТ; перфузионная МСКТ; опухоли головного мозга; perfusion; brain tumors; perfusion MRI; perfusion MSCT
|
|
Description |
The review provides a detailed analysis of perfusion MSCT and MRI possibilities in the diagnosis of brain tumors. The major quantitative parameters for perfusion MRI and MSCT are described in detail with comparison of morphological criteria for angiogenesis evaluation as well as the typical pattern of perfusion disturbances and changes in brain tumors before treatment and during follow-up period.
В обзоре приведен подробный анализ литературы, посвященной изучению возможностей перфузионных многослойной спиральной компьютерной томографии (МСКТ) и магнитно-резонансной томографии (МРТ) в диагностике опухолей головного мозга. Детально описаны основные количественные показатели оценки перфузии, которые можно определять с помощью технологий лучевой визуализации. Представлено сопоставление морфологических критериев оценки ангиогенеза и перфузионных параметров, показана типичная картина перфузионных нарушений в опухолях головного мозга, в том числе на фоне проводимого лечения. |
|
Publisher |
Federal Almazov North-West Medical Research Centre, Saint Petersburg, Russia
|
|
Date |
2016-12-23
|
|
Type |
info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion — |
|
Format |
application/pdf
|
|
Identifier |
http://transmed.almazovcentre.ru/jour/article/view/84
|
|
Source |
Translational Medicine; № 4 (2015); 41-47
Трансляционная медицина; № 4 (2015); 41-47 2410-5155 2311-4495 |
|
Language |
rus
|
|
Relation |
http://transmed.almazovcentre.ru/jour/article/view/84/85
Долгушин М. Б., Пронин И. Н. Перфузионная компьютерная томография в оценке эффективности лучевой терапии при вторичном опухолевом поражении головного мозга. Вестник РОНЦ им. Н. Н. Блохина РАМН. 2008;19(4):36-46. Долгушин М. Б., Пронин И. Н., Фадеева Л. М. Импульсная последовательность SWAN (3,0 Тесла) и КТ-перфузия в комплексной оценке структурных особенностей метастазов в головном мозге и злокачественных глиом. Лучевая диагностика и терапия. 2012;3(3):41-50. Aronen HJ, Pardo FS, Kennedy DN et al. High microvascular blood volume is associated with high glucose uptake and tumor angiogenesis in human gliomas. Clin Cancer Res. 2000;6:2189 -200. Barajas RFJr, Chang JS, Segal MR et al. Differentiation of recurrent glioblastoma multiforme from radiation necrosis after external beam radiation therapy with dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Radiology. 2009;253:486 -496. Barajas RF, Chang JS, Sneed PK et al. Distinguishing recurrent intra-axial metastatic tumor from radiation necrosis following gamma knife radiosurgery using dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Am J Neuroradiol. 2009;30:367-367. Bhujwalla ZM, Artemov D, Natarajan K. Reduction of vascular and permeable regions in solid tumors detected by macromolecular contrast magnetic resonance imaging after treatment with antiangiogenic agent TNP-470. Clin Cancer Res. 2003;9:355-362. Boone JM. Radiological interpretation 2020: Toward quantitative image assessment. Med Phys. 2007;34:4173-4179. Boxerman JL, Schmainda KM, Weisskoff RM. Relative cerebral blood volume maps corrected for contrast agent extravasation significantly correlate with glioma tumor grade, whereas uncorrected maps do not. Am J Neuroradiol. 2006;27:859 -867. Cha S, Johnson G, Wadghiri YZ et al. Dynamic, contrast-enhanced perfusion MRI in mouse gliomas: correlation with histopathology. Magn Reson Med. 2003;49:848 -855. Conturo TE, Akbudak E, Kotys MS et al. Arterial input functions for dynamic susceptibility contrast MRI: requirements and signal options. J Magn Reson Imaging. 2005;22:697-703. Covarrubias DJ, Rosen BR, Lev MH. Dynamic magnetic resonance perfusion imaging of brain tumors. Oncologist. 2004;9:528 -537. Ding B, Ling HW, Chen KM et al. Comparison of cerebral blood volume and permeability in preoperative grading of intracranial glioma using CT perfusion imaging. Neuroradiology. 2006;48:773-781. Eastwood JD, Provenzale JM. Cerebral blood flow, blood volume and vascular permeability of cerebral glioma assessed with dynamic CT perfusion imaging. Neuroradiology. 2003:45:373-376. Ellika SK, Jain R, Patel SC et al. Role of perfusion CT in glioma grading and comparison with convention MR imaging features. Am J Neuroradiol. 2007;28:1981- 1987 Folkman J. The role of angiogenesis in tumor growth. Semin Cancer Biol. 1992;3:65-71. Hara A. K., Paden R. G., Silva A. C. et al. Iterative reconstruction technique for reducing body radiation dose at CT: feasibility study. Am J Roentgenol. 2009;193:764 -771. Hoeffner EG, Case I, Jain R et al. Cerebral Perfusion CT: Technique and Clinical applications. Radiology. 2004;231:632-644. Jain R. Perfusion CT imaging of brain tumors: an overview. Am J Neuroradiol. 2011;32(9):1570-1577. Jain R, Gutierrez J, Narang J et al. In vivo correlation of tumor blood volume and permeability with histological and molecular angiogenic markers in gliomas. Am J Neuroradiol. 2011;32:388-394. Jain R, Scarpace L, Ellika S et al. First-pass perfusion computed tomography: initial experience in differentiating recurrent brain tumors from radiation effects and radiation necrosis. Neurosurgery. 2007;61:778 -786, discussion P. 786 -787 Jain RK, Munn LL, Fukumura D. Dissecting tumour pathophysiology using intravital microscopy. Nat Rev Cancer. 2002;2:266 -276 Johnson G, Wetzel SG, Cha S et al. Measuring blood volume and vascular transfer constant from dynamic, T (2)*-weighted contrast-enhanced MRI. Magn Reson Med. 2004;51:961-968. Johnson JA, Wilson TA. A model for capillary exchange. Am J Physiol. 1966;210:1299 -1303. Law M, Oh S, Johnson G et al. Perfusion magnetic resonance imaging predicts patient outcome as an adjunct to histopathology: a second reference standard in the surgical and nonsurgical treatment of low-grade gliomas. Neurosurgery. 2006;58:1099 -1107. Law M, Yang S, Babb JS et al. Comparison of cerebral blood volume and vascular permeability from dynamic susceptibility contrast-enhanced perfusion MR imaging with glioma grade. Am J Neuroradiol. 2004;25:746 -755. Law M, Yang S, Wang H et al. Glioma grading: sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging. Am J Neuroradiol. 2003;24:1989 -1998. Law M, Young RJ, Babb JS et al. Gliomas: predicting time to progression or survival with cerebral blood volume measurements at dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Radiology. 2008;247:490-498. Lee TY, Purdie TG, Stewart E. CT imaging of angiogenesis. Q J Nucl Med. 2003;47:171-187. Leon SP, Folkerth RD, Black PM. Microvessel density is a prognostic indicator for patients with astroglial brain tumors. Cancer. 1996;77:362-372. Lev MH, Ozsunar Y, Henson JW et al. Glial tumor grading and outcome prediction using dynamic spin-echo MR susceptibility mapping compared with conventional contrast-enhanced MR: confounding effect of elevated rCBV of oligodendrogliomas. Am J Neuroradiol. 2004;25:214 -221. Li VW, Folkerth RD, Watanabe H et al. Microvessel count and cerebrospinal fluid basic fibroblast growth factor in children with brain tumours. Lancet. 1994;344:82-86. Miles KA, Griffiths MR. Perfusion CT: a worthwhile enhancement? Br J Radiol. 2003;76:220-231. Plate KH, Breier G, Weich HA et al. Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature. 1992;359:845-848. Provenzale JM, Mukundan S, Dewhirst M. The role of blood-brain barrier permeability in brain tumor imaging and therapeutics. Am J Roentgenol. 2005;185:763-767. Purdie TG, Henderson E, Lee TY. Functional CT imaging of angiogenesis in rabbit VX2 soft-tissue tumour. Phys Med Biol. 2001;46:3161-3175. Raatschen HJ, Simon GH, Fu Y et al. Vascular permeability during antiangiogenesis treatment: MR imaging assay results as biomarker for subsequent tumor growth in rats. Radiology. 2008;247:391-399. Roberts HC, Roberts TP, Brasch RC et al. Quantitative measurement of microvascular permeability in human brain tumors achieved using dynamic contrast-enhanced MR imaging: correlation with histologic grade. Am J Neuroradiol. 2000;21:891-899 Roberts HC, Roberts TPL., Lee TY, Dillon WP. Dynamic Contrast-Enhanced CT of human brain tumors: quantitative assessment of blood volume, blood flow, and microvascular permeability: Report of two cases. Am J Neuroradiol. 2002;23:828-832. Shweiki D, Itin A, Soffer D et al. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature. 1992;359:843-845. Sugahara T, Korogi Y, Tomiguchi S et al. The Value of Perfusion-sensitive Contrast-enhanced MR Iamging for Differentiating Tumor Recurrence from Nonneoplastic Contrast-enhancing Tissue. Am J Neuroradiol. 2000;21:901-909. Uematsu H, Maeda M. Double-echo perfusion-weighted MR imaging: basic concepts and application in brain tumors for the assessment of tumor blood volume and vascular permeability. Eur Radiol. 2006;16:180 -186. Weidner N. Intratumor microvessel density as a prognostic factor in cancer. Am J Pathol. 1995;147:9 -19. Wintermark M, Sesay M, Barbier E et al. Comparative overview of brain perfusion imaging techniques. J Neuroradiol. 2005;32:294-314. |
|
Rights |
Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Авторы, публикующие в данном журнале, соглашаются со следующим:Авторы сохраняют за собой авторские права на работу и предоставляют журналу право первой публикации работы на условиях лицензии Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы сохраняют право заключать отдельные контрактные договорённости, касающиеся не-эксклюзивного распространения версии работы в опубликованном здесь виде (например, размещение ее в институтском хранилище, публикацию в книге), со ссылкой на ее оригинальную публикацию в этом журнале.Авторы имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access). |
|