SCALAR FIELD IN THE OSCILLATING DE SITTER UNIVERSE AND REFLECTION FROM A COSMOLOGICAL BARRIER
Doklady of the National Academy of Sciences of Belarus
View Archive InfoField | Value | |
Title |
SCALAR FIELD IN THE OSCILLATING DE SITTER UNIVERSE AND REFLECTION FROM A COSMOLOGICAL BARRIER
СКАЛЯРНОЕ ПОЛЕ В ОСЦИЛЛИРУЮЩЕЙ ВСЕЛЕННОЙ ДЕ СИТТЕРА И ОТРАЖЕНИЕ ОТ КОСМОЛОГИЧЕСКОГО БАРЬЕРА |
|
Creator |
E. Оvsiyuk M.; Mozyr State Pedagogical University named after I. P. Shamyakin
A. Koralkov D.; Mozyr State Pedagogical University named after I. P. Shamyakin Е. Овсиюк М.; Мозырский государственный педагогический университет им. И. П. Шамякина А. Коральков Д.; Мозырский государственный педагогический университет им. И. П. Шамякина |
|
Subject |
Klein–Fock–Gordon equation; spin 0; the oscillating de Sitter universe; separation of the variables; exact solutions; reflection of the particles
уравнение Клейна–Фока–Гордона; спин 0; осциллирующая модель де Ситтера; разделение переменных; точные решения; отражение частиц |
|
Description |
Recently it has been shown that the Lobachevsky geometry simulates an ideal mirror distributed in the space. Since the Lobachevsky model enters some cosmological models of the Universe, using theses models we need to take into account the presence of the «cosmological mirror». The earlier analysis assumed a static character of the space-time geometry. In this article, the generalization of the cosmological reflection effect to the oscillating de Sitter Universe is given for the scalar field. It is shown that the vanishing factor cos2 t in the metric of space-time does not lead to a singular behavior of solutions of the wave equation for the scalar field; instead, the solutions have a simple phase factor behavior in the time variable t, so the squared modulus of the wave function at cos t → 0 turns to be 1.
Ранее было установлено существование эффекта полного отражения частиц от космологического барьера, генерируемого геометрией пространства Лобачевского. В настоящей работе исследован эффект «космологического зеркала» в условиях нестатической геометрии пространства–временени. Детально рассмотрен случай скалярного поля в случае осциллирующей модели де Ситтера. В условиях нестатичности геометрии эффект отражения от космологического барьера сохраняется. Показано также, что обращение в нуль множителя cos2 t в метрике пространства–времени не приводит к сингулярному поведению решений уравнения для скалярного поля, поскольку имеются простые асимптотики решений по временной переменной t в виде чистых фазовых множителей, и при рассмотрении квадрата модуля волновых функций эти фазовые множители при cos t → 0 обращаются в 1. |
|
Publisher |
The Republican Unitary Enterprise Publishing House "Belaruskaya Navuka"
|
|
Contributor |
—
— |
|
Date |
2017-08-09
|
|
Type |
info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion — — |
|
Format |
application/pdf
|
|
Identifier |
http://doklady.belnauka.by/jour/article/view/417
|
|
Source |
Doklady of the National Academy of Sciences of Belarus; Том 61, № 3 (2017); 18-25
Доклады Национальной академии наук Беларуси; Том 61, № 3 (2017); 18-25 1561-8323 |
|
Language |
rus
|
|
Relation |
http://doklady.belnauka.by/jour/article/view/417/418
Maxwell equations in Riemannian space-time, geometry effect on material equations in media / V. M. Red’kov [et al.] // Nonlinear Phenomena in Complex Systems. – 2009. – Vol. 12, N 3. – P. 232–250. Овсиюк, Е. М. О решениях уравнений Максвелла в квазидекартовых координатах в пространстве Лобачевского / Е. М. Овсиюк, В. М. Редьков // Весцi Нац. акад. навук Беларусi. Сер. фiз.-мат. навук. – 2009. – № 4. – C. 99–105. Новые задачи квантовой механики и уравнение Гойна / Е. М. Овсиюк [и др.] // Научно-технические ведомости СПбГПУ. Сер. физ.-мат. науки. – 2012. – Т. 1, № 141. – С. 137–145. Овсиюк, Е. М. О моделировании потенциального барьера в теории Шредингера геометрией пространства Лобачевского / Е. М. Овсиюк, О. В. Веко // Весн. Брэсцкага універсiтэта. Сер. 4: Фiзiка, матэматыка. – 2011. – № 2. – C. 30–36. Овсиюк, Е. М. Решения типа плоских волн для частицы со спином 1/2 в пространстве Лобачевского / Е. М. Овсиюк, О. В. Веко // Весцi НАН Беларусi. Сер. фiз.-мат. навук. – 2012. – № 4. – С. 80–83. Ovsiyuk, E. M. On simulating a medium with special reflecting properties by Lobachevsky geometry / E. M. Ovsiyuk, O. V. Veko, V. M. Red’kov // Nonlinear Phenomena in Complex Systems. – 2013. – Vol. 16, N 4. – P. 331–344. Овсиюк, Е. М. О моделировании среды со свойствами идеального зеркала по отношению к свету и частицам со спином 1/2 / Е. М. Овсиюк, О. В. Веко, В. М. Редьков // Весцi НАН Беларуси. Сер. фiз.-мат. навук. – 2015. – № 1. – C. 76–85. Редьков, В. М. Поля частиц в римановом пространстве и группа Лоренца / В. М. Редьков. – Минск: Белорусская наука, 2009. – 496 с. Бейтмен, Г. Высшие трансцендентные функции: в 3 т. / Г. Бейтмен, А. Эрдейи. – М.: Наука, 1973. – Т. 1: Гипергеометрическая функция Гаусса. Функция Лежандра. – 294 с. Редьков, В. М. Частица в магнитном поле: 2-мерное сферическое пространство Римана и комплексный аналог полуплоскости Пуанкаре / В. М. Редьков, Е. М. Овсиюк, А. М. Ишханян // Докл. Нац. акад. наук Беларуси. – 2013. – Т. 57, № 1. – С. 55–62. |
|
Rights |
Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Авторы, публикующие в данном журнале, соглашаются со следующим:Авторы сохраняют за собой авторские права на работу и предоставляют журналу право первой публикации работы на условиях лицензии Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы сохраняют право заключать отдельные контрактные договорённости, касающиеся не-эксклюзивного распространения версии работы в опубликованном здесь виде (например, размещение ее в институтском хранилище, публикацию в книге), со ссылкой на ее оригинальную публикацию в этом журнале.Авторы имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access). |
|