In situ crosslinkable hydrogels for engineered cellular microenvironments
Russian Journal of Transplantology and Artificial Organs
View Archive InfoField | Value | |
Title |
In situ crosslinkable hydrogels for engineered cellular microenvironments
Сшиваемые in situ гидрогели для создания клеточного микроокружения |
|
Creator |
Kyung Park Min; Incheon National University
Ki Park Dong; Ajou University V. Sevastianov I.; V.I. Shumakov National Medical Research Center of Transplantology and Artificial Organs of the Ministry of Healthcare of the Russian Federation E. Nemetz A.; V.I. Shumakov National Medical Research Center of Transplantology and Artificial Organs of the Ministry of Healthcare of the Russian Federation V. Vasilets N.; V.I. Shumakov National Medical Research Center of Transplantology and Artificial Organs of the Ministry of Healthcare of the Russian Federation Кун Парк Мин; Национальный университет Инчеона Ки Парк Донг; Университет Ажон В. Севастьянов И.; ФГБУ «Национальный медицинский исследовательский центр трансплантологии и искусственных органов имени академика В.И. Шумакова» Минздрава России Е. Немец А.; ФГБУ «Национальный медицинский исследовательский центр трансплантологии и искусственных органов имени академика В.И. Шумакова» Минздрава России В. Василец Н.; ФГБУ «Национальный медицинский исследовательский центр трансплантологии и искусственных органов имени академика В.И. Шумакова» Минздрава России |
|
Subject |
polymeric hydrogel; in situ forming hydrogel; crosslinkable hydrogel; tissue engineering; regenerative medicine; engineered cellular microenvironments; implant; carrier
полимерный гидрогель;формируемый гидрогель;сшивка;тканевая инженерия;регенеративная медицина;клеточная микросреда;имплантат;носитель |
|
Description |
In situ crosslinkable hydrogels have been widely used as therapeutic implants and vehicles for a broad range of biomedical applications including tissue regenerative medicine because of their biocompatibility and easiness of encapsulation of cells or signaling molecules during hydrogel formation. Recently, these hydrogel materials have been widely utilized as an artificial extracellular matrix (aECM) because of its structural similarity with the native extracellular matrix (ECM) of the human body and its multi-tunable properties. Various synthetic, natural, and semisynthetic hydrogels have been developed as engineered cellular microenvironments by using various crosslinking strategies. In this review, we discuss how in situ forming hydrogels are being created with tunable physical, chemical, and biological properties. In particular, we focus on emerging techniques to apply advanced hydrogel materials for engineered cellular microenvironments.
Формируемые (сшиваемые) in situ гидрогели широко применяются в качестве терапевтических имплантатов и систем доставки для различных биомедицинских технологий, включая тканевую инженерию, регенеративную медицину и фармакологию, благодаря биосовместимости гидрогелей и простоте инкорпорирования в них лекарственных веществ, клеток или сигнальных молекул в процессе образования сетчатой структуры. В последнее время гидрогелевые материалы часто используются в качестве искусственного внеклеточного матрикса из-за их структурного сходства с нативным внеклеточным матриксом человека, а также из-за возможности регулировать их многообразные свойства. В качестве клеточной микросреды (матриксов, носителей) на основе различных технологий сшивки был разработан ряд синтетических, природных и полусинтетических гидрогелей. В данном обзоре обсуждаются вопросы создания формируемых in situ гидрогелей с регулируемыми физическими, химическими и биологическими свойствами. Будет сделан также анализ новых методов применения инновационных гидрогелевых материалов для создания клеточной микросреды как матриксов для биомедицинских тканевых продуктов, так и систем доставки клеток и лекарственных веществ. |
|
Publisher |
Academician V.I.Shumakov National Medical Research Center of Transplantology and Artificial Organs", Ministry of Health of the Russian Federation
|
|
Contributor |
—
— |
|
Date |
2017-09-16
|
|
Type |
info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion — — |
|
Format |
application/pdf
|
|
Identifier |
http://journal.transpl.ru/vtio/article/view/781
10.15825/1995-1191-2017-3-53-64 |
|
Source |
Russian Journal of Transplantology and Artificial Organs; Том 19, № 3 (2017); 53-64
Вестник трансплантологии и искусственных органов; Том 19, № 3 (2017); 53-64 2412-6160 1995-1191 10.15825/1995-1191-2017-3 |
|
Language |
rus
|
|
Relation |
http://journal.transpl.ru/vtio/article/view/781/652
Kopecek J. Hydrogel biomaterials: a smart future? Biomaterials. 2007; 28: 5185–5192. Peppas NA, Hilt JZ, Khademhosseini A, Langer R. Hydrogels in biology and medicine: From molecular principles to bionanotechnology. Advanced materials. 2006; 18: 1345– 1360. Surguchenko VA, Ponomareva AS, Kirsanova LA, Skaleckij NN, Sevastianov VI. The cell- engineered construct of cartilage on the basis of biopolymer hydrogel matrix and human adipose tissue-derived mesenchymal stromal cells (in vitro study). J. Biomed. Mater. Res. Part A. 2015; 103A (2): 463–470. Sevastianov VI, Dukhina GA, Ponomareva AS, Kirsanova LA, Perova NV, Skaletskiy NN. A Biomedical Cell Product for the Regeneration of Articular Cartilage: Biocompatible and Histomorphological Properties (an Experimental Model of Subcutaneous Implantation). Inorganic Materials: Applied Research. 2015; 6 (2): 162–170. Sivashanmugam A, Kumar RA, Priya MV, Nair SV, Jayakumar R. An overview of injectable polymeric hydrogels for tissue engineerin. European Polymer Journal. 2015; 72: 543–565. Alexander AA, Khan J, Saraf S, Saraf S. Thermosensitive polymers for controlled delivery of hormones. J. Control Release. 2013; 172: 715–729. Bae KH, Wang L-S, Kurisawa M. Injectable biodegradable hydrogels: progress and challenges. J. Mater. Chem. B. 2013; 1: 5371–5388. Yang J-A, Yeom J, Hwang BW, Hoffman AS, Hahn SK. N‑succinyl chitosan preparation, characterization, properties and biomedical applications: a state of the art review. Prog Polym Sci. 2014; 39: 1973–1986. Atala A, Cima LG, Kim W, Paige KT, Vacanti JP, Retik AB, Vacanti CA. Injectable alginate seeded with chondrocytes as a potential treatment for vesicoureteral reux. J. Urol. 1993; 150: 745–747. Zhao L, Weir MD, Xu HH. An injectable calcium phosphate-alginate hydrogel- umbilical cord mesenchymal stem cell paste for bone tissue engineering. Biomaterials. 2010; 31: 6502–6510. Nair LS, Laurencin CT. Biodegradable polymers as biomaterials. Prog. Polym. Sci. 2007; 32: 762–798. Sun J-Y, Zhao X, Illeperuma WR, Chaudhuri O, Oh KH, Mooney DJ, Vlassak JJ, Suo Z. Highly stretchable and tough hydrogels. Nature. 2012; 489: 133–136. Tseng TC, Tao L, Hsieh FY, Wei Y, Chiu IM, Hsu SH. An Injectable, Self-Healing Hydrogel to Repair the Central Nervous System. Advanced materials. 2015; 27: 3518– 3524. Hunt NC, Hallam D, Karimi A, Mellough CB, Chen J, Steel DH, Lako M. 3D culture of human pluripotent stem cells in RGD-alginate hydrogel improves retinal tissue development. Acta biomaterialia. 2017; 49: 329–343. Davis ME, Brewster ME. Cyclodextrin-based pharmaceutics: past, present and futur. Nat. Rev. Drug Discovery. 2004; 3: 1023–1035. Li J. Self-assembled supramolecular hydrogels based on polymer – cyclodextrin inclusion complexes for drug delivery. NPG Asia Materials. 2010; 2: 112–118. Kretschmann O, Choi SW, Miyauchi M, Tomatsu I, Harada A, RitterH. Switchable Hydrogels Obtained by Supramolecular Cross-Linking of Adamantyl-Containing LCST Copolymers with Cyclodextrin Dimers. Angewandte Chemie International Edition. 2006; 45: 4361– 4365. Manakker F, Pot M, Vermonden T, Nostrum CF, Hennink WE. Self-assembling hydrogels based on β-cyclodextrin/cholesterol inclusion complexes. Macromolecules. 2008; 41 (5): 1766–1773. Rodell CB, Kaminski AL, Burdick JA. Sequential crosslinking to control cellular spreading in 3-dimensional hydrogels. Biomacromolecules. 2013; 14 (11): 4125–4134. Elisseeff J, Anseth K, Sims D, McIntosh W, Randolph M, Langer R. Transdermal photopolymerization of poly(ethylene oxide)-based injectable hydrogels for tissue- engineered cartilage. Proceedings of the National Academy of Sciences. 1999; 96: 3104–3107. Kramer N, Lohbauer U, García-Godoy F, Frankenberger R. Light curing of resin-based composites in the LED era. Am. J. Dent. 21 (3): 135–142. Ifkovits JL, Burdick JA. Engineered microenvironments for controlled stem cell differentiation. Tissue engineering. 2007; 13 (10): 2369–2385. Nichol JW, Koshy ST, Bae H, Hwang CM, Yamanlar S, Khademhosseini A. Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials. 2010; 31 (21): 5536– 5544. Binder WH, Sachsenhofer R. Click’ chemistry in polymer and materials science. Macromol Rapid Comm. 2007: 28: 15–54. Moses JE, Moorhouse AD. The growing applications of click chemistry. Chem. Soc. Rev. 2007; 36: 1249–1262. Horne WS, Yadav MK, Stout CD, Ghadiri MR. Heterocyclic Peptide Backbone Modifications in an α-Helical Coiled Coil. J. Am. Chem. Soc. 2004; 126 (47): 15366– 15367. Angelo NG, Arora PS. Nonpeptidic Foldamers from Amino Acids: Synthesis and Characterization of 1,3-Substituted Triazole Oligomers. J. Am. Chem. Soc. 2005; 127 (49): 17134–17135. Alge DL, Azagarsamy MA, Donohue DF, Anseth KS. Synthetically tractable click hydrogels for three-dimensional cell culture formed using tetrazine-norbornene chemistry. Biomacromolecules. 2013; 14: 949–953. Hu J, Zhang G, Liu S. Highly selective fluorogenic multianalyte biosensors constructed via enzyme-catalyzed coupling and aggregation-induced emission. Chem. Soc. Rev. 2012; 41 (18): 5933–5949. Jin R, Hiemstra C, Zhong Z, Feijen J. Enzyme-mediated fast in situ formation of hydrogels from dextran-tyramine conjugates. Biomaterials. 2007; 28: 2791–2800. Park KM, Shin YM, Joun YK, Shin H, Park KD. In situ forming hydrogels based on tyramine conjugated 4-Arm- PPO-PEO via enzymatic oxidative reaction. Biomacromolecules. 2010; 11: 706–712. Kurisawa M, Chung JE, Yang YY, Gao SJ, Uyama H. Chem Commun. Injectable biodegradable hydrogels composed of hyaluronic acid – tyramine conjugates for drug delivery and tissue engineering. Chem. Commun. 2005; 34: 4312–4314. Park KM, Ko KS, Joung YK, Shin H, Park KD. In situ cross-linkable gelatin- poly(ethylene glycol)-tyramine hydrogel via enzyme-mediated reaction for tissue regenerative medicine. J. Mater. Chem. 2011; 21: 13180– 13187. Park KM, Gerecht S. Hypoxia-inducible hydrogels. Nature communications. 2014; 5: 4075. Park S, Park KM. Engineered Polymeric Hydrogels for 3D Tissue Models. Polymers. 2016; 8 (1): 23. Park KM, Gerecht S. Polymeric hydrogels as artificial extracellular microenvironments for cancer research. Eur. Polym. J. 2015; 72: 507–513. Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nature medicine. 2013; 19: 1423–1437. Junttila MR, de Sauvage FJ. Influence of tumour microenvironment heterogeneity on therapeutic response. Nature. 2013; 501 (7467): 346–354. Rizki A, Weaver VM, Lee SY, Rozenberg GI, Chin K, Myers CA et al. A human breast cell model of preinvasive to invasive transition. Cancer Res. 2008 Mar 1; 68 (5): 1378– 1387. Cancer research. 2008; 68: 1378–1387. Bertout JA, Patel SA, Simon MC. The impact of O2 availability on human cancer. Nat. Rev. Cancer. 2008; 8: 967–975. |
|
Rights |
Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Авторы, публикующие в данном журнале, соглашаются со следующим:Авторы сохраняют за собой авторские права на работу и предоставляют журналу право первой публикации работы на условиях лицензии Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы сохраняют право заключать отдельные контрактные договорённости, касающиеся не-эксклюзивного распространения версии работы в опубликованном здесь виде (например, размещение ее в институтском хранилище, публикацию в книге), со ссылкой на ее оригинальную публикацию в этом журнале.Авторы имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access). |
|